Schrödinger Equations and Diffusion Theory

Etukansi
Springer Science & Business Media, 1.7.1993 - 323 sivua

Schrödinger Equations and Diffusion Theory addresses the question "What is the Schrödinger equation?" in terms of diffusion processes, and shows that the Schrödinger equation and diffusion equations in duality are equivalent. In turn, Schrödinger's conjecture of 1931 is solved. The theory of diffusion processes for the Schrödinger equation tell us that we must go further into the theory of systems of (infinitely) many interacting quantum (diffusion) particles.
The method of relative entropy and the theory of transformations enable us to construct severely singular diffusion processes which appear to be equivalent to Schrödinger equations.
The theory of large deviations and the propagation of chaos of interacting diffusion particles reveal the statistical mechanical nature of the Schrödinger equation, namely, quantum mechanics.
The text is practically self-contained and requires only an elementary knowledge of probability theory at the graduate level.

 

Mitä ihmiset sanovat - Kirjoita arvostelu

Yhtään arvostelua ei löytynyt.

Sisältö

Introduction and Motivation
1
Diffusion Processes and their Transformations
13
Duality and Time Reversal of Diffusion Processes
55
Equivalence of Diffusion and Schrödinger Equations
89
Variation Principle
115
Diffusion Processes in qRepresentation
139
Segregation of a Population
163
The Schrödinger Equation can be a Boltzmann Equation
207
Applications of the Statistical Model for Schrödinger Equations
223
Relative Entropy and Csiszars Projection
239
Large Deviations
253
NonLinearity Induced by the Branching Property
261
Tekijänoikeudet

Muita painoksia - Näytä kaikki

Yleiset termit ja lausekkeet

Kirjaluettelon tiedot