Learning Machines: Foundations of Trainable Pattern-classifying SystemsMcGraw-Hill, 1965 - 137 sivua |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 23
Sivu 5
... consider the sets shown in Fig . 1.2 where d = 2 and R = 3. A point in the plane is mapped into the numbers 1 , 2 , or 3 , according to its membership in R1 , R2 , or Rs , respectively . For example , the pattern ( 5 , -3 ) would be ...
... consider the sets shown in Fig . 1.2 where d = 2 and R = 3. A point in the plane is mapped into the numbers 1 , 2 , or 3 , according to its membership in R1 , R2 , or Rs , respectively . For example , the pattern ( 5 , -3 ) would be ...
Sivu 16
... consider first the family of discriminant functions of the form g ( X ) = w1X1 + W2X2 + · · + waxa + wa + 1 ( 2.2 ) This function is a linear function of the components of X ; we shall denote discriminant functions of this form by the ...
... consider first the family of discriminant functions of the form g ( X ) = w1X1 + W2X2 + · · + waxa + wa + 1 ( 2.2 ) This function is a linear function of the components of X ; we shall denote discriminant functions of this form by the ...
Sivu 24
... consider those of a minimum - distance classifier with respect to point sets . Suppose we are given R finite point sets P1 , P2 , . . . , PR . For each i = 1 , ... , R , let the ith point set consist of the L ; points P. ( 1 ) , P , ( 2 ) ...
... consider those of a minimum - distance classifier with respect to point sets . Suppose we are given R finite point sets P1 , P2 , . . . , PR . For each i = 1 , ... , R , let the ith point set consist of the L ; points P. ( 1 ) , P , ( 2 ) ...
Sisältö
Preface vii | 1 |
PARAMETRIC TRAINING METHODS | 43 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
Tekijänoikeudet | |
4 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
assume belonging to category Chapter cluster committee machine committee TLUS components correction increment covariance matrix decision surfaces denote diagonal matrix discussed dot products error-correction procedure Euclidean distance example Fix and Hodges function g(X g₁(X given Hodges method hypersphere image-space implemented initial weight vectors ith bank layer of TLUS layered machine linear dichotomies linear discriminant functions linearly separable loss function mean vector minimum-distance classifier mode-seeking networks nonparametric number of patterns p₁ parameters parametric training partition pattern hyperplane pattern points pattern space pattern vector pattern-classifying patterns belonging perceptron piecewise linear plane point sets positive probability distributions prototype pattern PWL machine quadratic form quadric function rule sample covariance matrix shown in Fig solution weight vectors Stanford subsets X1 subsidiary discriminant functions Suppose terns training patterns training sequence training set training subsets transformation two-layer machine values W₁ wa+1 weight point weight space weight-vector sequence X1 and X2 zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |