Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 16
Sivu 30
That is , the parameters which determine a specific quadric function from among
a whole family of quadric functions appear linearly in the function . There is an
important class of function families whose parameters have this property . We
shall ...
That is , the parameters which determine a specific quadric function from among
a whole family of quadric functions appear linearly in the function . There is an
important class of function families whose parameters have this property . We
shall ...
Sivu 43
We shall begin by assuming that the pattern classes are characterized by sets of
parameters ( for example , cluster points ) . The values of these parameters might
be unknown a priori . If the parameters were known , we assume that ...
We shall begin by assuming that the pattern classes are characterized by sets of
parameters ( for example , cluster points ) . The values of these parameters might
be unknown a priori . If the parameters were known , we assume that ...
Sivu 44
We assume that the p ( xli ) are known functions of a finite number of
characteristic parameters whose values we might not know a priori . For example
, we may know that the p ( X \ i ) , i = 1 , . . . , R , are normal probability - density
functions ...
We assume that the p ( xli ) are known functions of a finite number of
characteristic parameters whose values we might not know a priori . For example
, we may know that the p ( X \ i ) , i = 1 , . . . , R , are normal probability - density
functions ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
Preface vii | 1 |
PARAMETRIC TRAINING METHODS | 43 |
TRAINING THEOREMS | 79 |
Tekijänoikeudet | |
1 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding covariance decision surfaces define denote density depends derivation described discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear machine linearly separable matrix mean vector measurements negative normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric reduced regions respect response rule sample mean selection separable shown side solution space Stanford step Suppose theorem theory threshold training methods training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |