Sivut kuvina

not but we ourselves might distinctly number in words a great deal farther than we usually do, would we find out but some fit denomination to signify them by; whereas in the way we take now to name them by millions of millions of millions, &c. it is hard to go beyond eighteen, or at most four and twenty decimal progressions, without confusion. But to show how much distinct names conduce to our well reckoning, or having useful ideas of numbers, let us set all these following figures in one continued line, as the marks of one number; v. g.

Nonillions. Octillions. Septillions. Sextillions. Quint riUions. 857324 162486 345896 437918 423147 Quatrillions. Trillions. Billions. Millions. Units. 248106 235421 261734 368149 623137

The ordinary way of naming this number in English, will be the often repeating of millions, of millions, of millions, of millions, of millions, of millions, of millions, of millions, (which is the denomination of the second six figures). In which way, it will be very hard to have any distinguishing notions of this number: but whether, by giving every six figures a new and orderly denomination, these, and perhaps a great many more figures in progression, might not easily be counted distinctly, and ideas of them both got more easily to ourselves, and more plainly signified to others, I leave it to be considered. This I mention only to show how necessary distinct names are to numbering, without pretending to introduce new ones of my invention. Whychil- Thus children, either for want of dren number names to mark the several progressions of not earlier. numbers, or not having yet the faculty to collect scattered ideas into complex ones, and range them in a regular order, and so retain them in their memories, as is necessary to reckoning; do not begin to number very early, nor proceed in it very far or steadily, till a good while after they are well furnished with good store of other ideas: and one may often observe them discourse and reason pretty well, and have very clear conceptions of several other things, before they can tell twenty. And some, through the default of their memories, who cannot retain the several combmations of numbers, with their names annexed in their distinct orders, and the dependence of so long train of numeral progressions, and their relatibh one: to another, are not able all their life-time to reckon, or regularly go over any moderate series of numbers. For he that will count twenty, or have any idea of that number, must know that nineteen went before, with the distinct name or sign of every one of them, as they stand marked in their order; for wherever this fails, a gap is made, the chain breaks, and the progress in numbering can go no farther. So that to reckon right, it is required, 1. That the mind distinguish carefully two' ideas, which are different one from another only by the addition or subtraction of one unit. 2. That it retain in memory the names or marks of the several combinations, from an unit to that number; and that not confusedly, and at random, but in that exact order, that the numbers follow one another: in either of which, if it trips, the whole business of numbering will be disturbed, and there will remain only the confused idea of multitude, but the ideas necessary to distinct numeration will not be attained to.

§. 8. This farther is observable in nurn- Number bers, that it is that which the mind makes measures use of in measuring all things that by us all measurare measurable, which principally are ex- ables' pansion and duration; and our idea of infinity, even when applied to those, seems to be nothing but the infinity of number. For what else are our ideas of eternity and immensity, but the repeated additions of certain ideas of imagined parts of duration and expansion, with the infinity of number, in which we can come to no end of addition? For such an inexhaustible stock, number (of all other our ideas) most clearly furnishes us with, as is obvious to every one. For let a man collect into one sum as great a number as he pleases, this multitude, how great soever, lessens not one jot the power of adding to it, or brings him any nearer the end of the inexhaustible stock of number,

Vol. i. o


where still there remains as much to be added, as if none were taken out. And this endless addition or addibility (if any one like the word better) of numbers, so apparent to the mind, is that, I think, which gives us the clearest and most distinct idea of infinity: of which more in the following chapter.

Of Infinity.

Infinity, in ]. Jje that would know what kind of

its original ^ -g tQ we „ive the name 0f

intention,at- . » . , . , 0 , ,

tributed to infinity, cannot do it better, than by conspace, dura- sidering to what infinity is by the mind tion and more immediately attributed, and then how num er. ^ mind comes to frame it.'

Finite and infinite seem to me to be looked upon by the mind as the modes of quantity, and to be attributed primarily in their first designation only to those things which have parts, and are capable of increase or diminution, by the addition or subtraction of any the least part: and such are the ideas of space, duration, and number, which we have considered in the foregoing chapters. It is true, that we cannot but be assured, that the great God, of whom and from whom are all things, is incomprehensibly infinite: but yet when we apply to that first and supreme being our idea of infinite, in our weak and narrow thoughts, we do it primarily in respect to his duration and ubiquity j and, I think, more figuratively to his power, wisdom, and goodness, and other attributes, which are properly inexhaustible and incomprehensible, &c. For, when we call them infinite, we have no other idea of this infinity, but what carries with it some reflection on, and imitation of, that number or extent of the acts or objects of God's power, wisdom, and goodness, which can never be supposed so great or so many, which these attributes will not always surmount and exceed, let us multiply them in our thoughts as far as we can, with all the infinity of endless number. I do not pretend to say how these attributes are in God, who is infinitely beyond the reach of our narrow capacities. They do, without doubt, contain in them all possible perfection: but this, I say, is our way of conceiving them, and these our ideas of their infinity.

§. 2. Finite then, and infinite, being by The idea of the mind looked on as modifications of ex- finite easily pansion and duration, the next thing to be Sotconsidered, is, how the mind comes by them. As for the idea of finite, there is no great difficulty. The obvious portions of extension that affect our senses, carry with them into the mind the idea of finite: and the ordinary periods of succession, whereby we measure time and duration, as hours, days, and years, are bounded lengths. The difficulty is, how we come by those boundless ideas of eternity and immensity, since the objects we converse with, come so much short of any approach or proportion to that largeness.

§.3. Every one that has any idea of any How we stated lengths of space, as afoot, finds that come by the he can repeat that idea; and, joining it to ideaofinfi- the former, make the idea of two feet; and nity' by the addition of a third, three feet; and so on, without ever coming to an end of his addition, whether of the same idea of a foot, or if he pleases of doubling it, or any other idea he has of any length, as a mile, or diameter of the earth, or of the orbis magnus: for whichsoever of these he takes, and how often soever he doubles, or any otherwise multiplies it, he finds that after he has continued his doubling in his thoughts, and enlarged his idea as much as he pleases, he has no more reason to stop, nor is one jot nearer the end of such addition, than he was at first setting out. The power of enlarging his idea of space by farther additions remaining still the same, he hence takes the idea of infinite space.

§. 4. This, I think, is the way whereby 0urideaof the mind gets the idea of infinite space. It spaceboundis a quite different consideration, to exa- less, mine whether the mind has the idea of such

a boundless space actually existing, since our ideas are not always proofs of the existence of things; but yet, since this comes here in our way, I suppose I may say, that we are apt to think that space in itself is actually boundless; to which imagination, the idea of space or expansion of itself naturally leads us. For it being considered by us, either as the extension of body, or as existing by itself, without any solid matter taking it up (for of such a void space we have not only the idea, but I have proved as I think, from the motion of body, its necessary existence) it is impossible the mind should be ever able to find or suppose any end of it, or be stopped any where in its progress in this space, how far soever it extends its thoughts. Any bounds made with body, even adamantine walls, are so far from putting a stop to the mind in its farther progress in space and extension, that it rather facilitates and enlarges it: for so far as that body reaches, so far no one can doubt of extension; and when we are come to the utmost extremity of body, what is there that can there put a stop, and satisfy the mind that it is at the end of space, when it perceives that it is not; nay, when it is satisfied that body itself can move into it? For if it be necessary for the motion of body, that there should be an empty space, though ever so little, here amongst bodies; and if it be possible for body to move in or through that empty space; nay it is impossible for any particle of matter to move but into an empty space; the same possibility of a body's moving into a void space, beyond the utmost bounds of body, as well as into a void space interspersed amongst bodies, will always remain clear and evident: the idea of empty pure space, whether within or beyond the confines of all bodies, being exactly the same, differing not in nature, though in bulk: and there being nothing to hinder body from moving into it. So that wherever the mind places itself by any thought, either amongst or remote from all bodies, it can in this uniform idea of space no-where find any bounds, any end; and so must necessarily conclude it, by the very nature and idea of each part of it, to be actually infinite.

« EdellinenJatka »