An Introduction to Support Vector Machines and Other Kernel-based Learning MethodsThis is the first comprehensive introduction to Support Vector Machines (SVMs), a generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software ensure that it forms an ideal starting point for further study. Equally, the book and its associated web site will guide practitioners to updated literature, new applications, and on-line software. |
Kirjan sisältä
Tulokset 1 - 5 kokonaismäärästä 38
Sivu x
Each chapter finishes with a section entitled Further Reading and Advanced Topics, which fulfils two functions. First by moving all the references into this section we have kept the main text as uncluttered as possible.
Each chapter finishes with a section entitled Further Reading and Advanced Topics, which fulfils two functions. First by moving all the references into this section we have kept the main text as uncluttered as possible.
Sivu 7
Nello Cristianini, John Shawe-Taylor. will render an application successful, in both algorithmic and statistical inference terms. We will see in the next section that Support Vector Machines address all of these problems.
Nello Cristianini, John Shawe-Taylor. will render an application successful, in both algorithmic and statistical inference terms. We will see in the next section that Support Vector Machines address all of these problems.
Sivu 11
In order to avoid duplication, we will describe them in the regression section. 2.1.1 Rosenblatt's Perceptron The first iterative algorithm for learning linear classifications is the procedure proposed by Frank Rosenblatt in 1956 for ...
In order to avoid duplication, we will describe them in the regression section. 2.1.1 Rosenblatt's Perceptron The first iterative algorithm for learning linear classifications is the procedure proposed by Frank Rosenblatt in 1956 for ...
Sivu 24
Katseluoikeutesi tähän teokseen on päättynyt.
Katseluoikeutesi tähän teokseen on päättynyt.
Sivu 29
Katseluoikeutesi tähän teokseen on päättynyt.
Katseluoikeutesi tähän teokseen on päättynyt.
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
1 | |
9 | |
KernelInduced Feature Spaces | 26 |
Generalisation Theory | 52 |
Optimisation Theory | 79 |
Support Vector Machines | 93 |
Implementation Techniques | 125 |
Applications of Support Vector Machines | 149 |
A Pseudocode for the SMO Algorithm | 162 |
References | 173 |
Index | 187 |
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
1-norm soft margin algorithm analysis applied approach Bayesian bias bound Chapter choice classification computational consider constraints convergence convex corresponding datasets Definition described dual problem dual representation fat-shattering dimension feasibility gap feature mapping feature space finite Gaussian processes generalisation error geometric margin given Hence heuristics high dimensional Hilbert space hyperplane hypothesis inequality inner product space input space introduced iterative Karush-Kuhn-Tucker kernel function kernel matrix Lagrange multipliers Lagrangian learning algorithm linear functions linear learning machines loss function machine learning margin distribution margin slack vector maximal margin hyperplane maximise minimise norm objective function obtained on-line optimisation problem parameters perceptron perceptron algorithm performance positive semi-definite primal and dual quantity random examples real-valued function Remark result ridge regression Section sequence slack variables soft margin optimisation solution solve subset Support Vector Machines SVMs techniques Theorem training data training examples training points training set update Vapnik VC dimension weight vector zero