An Introduction to Support Vector Machines and Other Kernel-based Learning MethodsThis is the first comprehensive introduction to Support Vector Machines (SVMs), a generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software ensure that it forms an ideal starting point for further study. Equally, the book and its associated web site will guide practitioners to updated literature, new applications, and on-line software. |
Kirjan sisältä
Tulokset 1 - 5 kokonaismäärästä 16
Sivu v
... 8 2 Linear Learning Machines 9 2.1 Linear Classification 9 2.1.1 Rosenblatt's Perceptron 11 2.1.2 Other Linear Classifiers 19 2.1.3 Multi-class Discrimination 20 2.2 Linear Regression 20 2.2.1 Least Squares 21 2.2.2 Ridge Regression ...
... 8 2 Linear Learning Machines 9 2.1 Linear Classification 9 2.1.1 Rosenblatt's Perceptron 11 2.1.2 Other Linear Classifiers 19 2.1.3 Multi-class Discrimination 20 2.2 Linear Regression 20 2.2.1 Least Squares 21 2.2.2 Ridge Regression ...
Sivu vi
... Margin Optimisation 103 6.1.3 Linear Programming Support Vector Machines 112 6.2 Support Vector Regression 112 6.2.1 e-Insensitive Loss Regression 114 6.2.2 Kernel Ridge Regression 118 6.2.3 Gaussian Processes 120 6.3 Discussion 121 ...
... Margin Optimisation 103 6.1.3 Linear Programming Support Vector Machines 112 6.2 Support Vector Regression 112 6.2.1 e-Insensitive Loss Regression 114 6.2.2 Kernel Ridge Regression 118 6.2.3 Gaussian Processes 120 6.3 Discussion 121 ...
Sivu 21
This solution, proposed by Hoerl and Kennard, is known as ridge regression. Both these algorithms require the inversion of a matrix, though a simple iterative procedure also exists (the Adaline algorithm developed by Widrow and Hoff in ...
This solution, proposed by Hoerl and Kennard, is known as ridge regression. Both these algorithms require the inversion of a matrix, though a simple iterative procedure also exists (the Adaline algorithm developed by Widrow and Hoff in ...
Sivu 22
2.2.2 Ridge Regression If the matrix X'X in the least squares problem is not of full rank, or in other situations where numerical stability problems occur, one can use the following solution: Table 2.3 : The Widrow-Hoff Algorithm ...
2.2.2 Ridge Regression If the matrix X'X in the least squares problem is not of full rank, or in other situations where numerical stability problems occur, one can use the following solution: Table 2.3 : The Widrow-Hoff Algorithm ...
Sivu 23
Katseluoikeutesi tähän teokseen on päättynyt.
Katseluoikeutesi tähän teokseen on päättynyt.
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
1 | |
9 | |
KernelInduced Feature Spaces | 26 |
Generalisation Theory | 52 |
Optimisation Theory | 79 |
Support Vector Machines | 93 |
Implementation Techniques | 125 |
Applications of Support Vector Machines | 149 |
A Pseudocode for the SMO Algorithm | 162 |
References | 173 |
Index | 187 |
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
1-norm soft margin algorithm analysis applied approach Bayesian bias bound Chapter choice classification computational consider constraints convergence convex corresponding datasets Definition described dual problem dual representation fat-shattering dimension feasibility gap feature mapping feature space finite Gaussian processes generalisation error geometric margin given Hence heuristics high dimensional Hilbert space hyperplane hypothesis inequality inner product space input space introduced iterative Karush-Kuhn-Tucker kernel function kernel matrix Lagrange multipliers Lagrangian learning algorithm linear functions linear learning machines loss function machine learning margin distribution margin slack vector maximal margin hyperplane maximise minimise norm objective function obtained on-line optimisation problem parameters perceptron perceptron algorithm performance positive semi-definite primal and dual quantity random examples real-valued function Remark result ridge regression Section sequence slack variables soft margin optimisation solution solve subset Support Vector Machines SVMs techniques Theorem training data training examples training points training set update Vapnik VC dimension weight vector zero