Sivut kuvina
PDF
ePub

leurs jetons; et elle devient ou la même que la probabilité de l'autre joueur, dans le cas. * où les nombres de leurs jetons deviendraient infinis, en conservant toujours le même rap, port.,

On peut corriger l'influence de ces inégaJités inconnues, en les soumettant elles-mêmes aux chances du hasard. Ainsi au jeu de croix et pile, si l'on a une seconde pièce que l'on projette chaque fois avec la première; et que l'onconviennedenommer constammentcroix, la face amenée par cette seconde pièce; la proz babilité d'amener croix deux fois de suite, avec la première pièce, approchera beaucoup plus d'un quart, que dans le cas d'une seule pièce. Dans ce dernier cas, la différence est le carré du petit accroissement de possibilité que l'inégalité inconnue donne à la face de là première pièce, qu'elle favorise : dans l'autre cas, cette différence est le quadruple produit de ce carré, par le carré correspondant relatif à la seconde pièce...' : Que l'on jette dans une urne, cent numéros, depuis un jusqu'à cent, dans l'ordre de la numération, et qu'après avoir agité l'urne, pour mêler ces numéros, on en tire un; il est clair que si le mélange a été bien fait, les probabilités de sortie des numéros, seront les mêmes. Mais și l'on craint qu'il n'y ait entre elles, de. "petites différences dépendantes de l'ordre suivant lequel les numéros ont été jetés dans l'urne; on diminuera considérablement ces différences, en jetant dans une seconde urne, ces numéros suivant leur ordre de sortie de la première urne, et en agitant ensuite cette seconde urne pour mêler ces numéros. Une troisième urne, une quatrième, etc., diminueraient de plus en plus ces différences déjà insensibles dans la seconde urne.

Des Lois de la Probabilité, qui résultent

de la multiplication indéfinie des événemens.

Au'milieu des causes variables et inconnues que nous comprenons sous le nom de hasard, et qui rendent incertaine et régulière, la marche des événemens; on voit naître à mesure qu'ils se multiplient, une régularité frappante qui semble tenir à un dessein, et que l'on a considérée comme une preuve de la providence qui gouverne le monde. Mais en y réfléchissant, on reconnaît bientôt que cette régularité n'est que le développement. des possibilités respectives des événemens simples qui doivent se présenter plus sous vent; lorsqu'ils sont plus probables. Cóncevons, par exemple, une urne qui renferme

des boules blanches et des boules noires; et supposons qu'à chaque fois que l'on en tire une boule, on la remette dans l'urne pour procéder à un nouveau tirage. Le rapport du nombre des boules blanches extraites, au nombre des boules noires extraites, sera le plus souvent très-irrégulier dans les premiers tirages; mais les causes variables de cette irrégularité, produisent des effets alternativement favorables et contraires à la marche régulière des événemens, et qui se détruisant mutuellement dans l'ensemble d'un grand nombre de tirages, laissent de plus en plus apercevoir le rapport des boules blanches aux boules noires contenues dans l'urne, ou les possibilités respectives d'en extraire une boule blanche ou une boule noire à chaque tirage. De là résulte le théorème suivant.

La probabilité que le rapport du nombre des boules blanches extraites, au nombre total des boules sorties, ne s'écarte pas audelà d'un intervalle donné, du rapport du nombre des boules blanches, au nombre total des boules contenues dans l'urne, approche indéfiniment de la certitude, par la multiplication indéfinie des événemens, quelque petit que l'on suppose cet intervalle.

Ce théorème indiqué par le bon sens, était difficile à démontrer par l'analyse. Aussi

l'illustre géomètre Jacques Bernoulli quis'en est occupéle premier, attachait-il une grande importance à la démonstration qu'il en a donnée. Le calcul des fonctions génératrices, appliqué à cet objet, non-seulement démontre avec facilité ce théorème; mais de plus il donne la probabilité que le rapport des événemens observés, ne s'écarte que dans certaines lie mites, du vrai rapport de leurs possibilités respectives, . On peut tirer du théorème précédent, cette conséquence qui doit être regardée comme une loi générale, savoir, que les rapports des effets de la nature, sont à fort peu près constans, quand ces effets sont considérés en grand pombre. Ainsi, malgré la variété des années, la somme des productions pendant un nombre d'années, considérable, est sensiblement la même; ensorte que l'homme, par une utile prévoyance, peut se mettre à l'abri de l'irrégularité des saisons, en répandant également sur tous les temps, les biens que la nature distrie bue d'une manière inégale. Je n'excepte pas de la loi précédente, les effets dus aux causes morales. Le rapport des naissances annuelles à la population, et celui des mariages aux naissances, n'éprouvent que de très-petites. variations : à Paris, le nombre des naissances annuelles a toujours été le même à peu près; et j'ai ouï dire qu'à la poste, dans les temps ordinaires, le nombre des lettres mises au rebut par les défauts des adresses, change peu, chaque année; ce qui a été pareillement observé à Londres. · Il suit encore de ce théorème, que dans une série d'événemens, indéfiniment prolongée, l'action des causes régulières et constantes doit l'emporter à la longue, sur celle des causes irrégulières. C'est ce qui rend les gains des loteries, aussi certains que les produits de l'agriculture; les chances qu'elles se réservent, leur assurant un bénéfice dans l'ensemble d'un grand nombre de mises. Ainsi des chances favorables et nombreuses étant constamment attachées à l'observation des principes éternels de raison , de justice et d'humanité, qui fondent et maintiennent les sociétés ; il y a un grand avantage à se conformer à ces principes, et de graves inconvéniens à s'en écarter. Que l'on consulte les histoires et sa propre expérience; on y verra tous les faits venir à l'appui de ce résultat du calcul. Considérez les avantages que la bonne. foi a procurés aux gouvernemens qui en ont fait la base de leur conduite, et comme ils ontété dédommagés des sacrifices qu'a pu leur coûter une scrupuleuse exactitude à tenir leurs promesses : quel immense crédit au dedans!

« EdellinenJatka »