Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 41
Sivu 67
This hyperplane separates the space of weight points into two classes : Those which for the pattern Y produce a TLU ... Eq . ( 4.2 ) regardW2 0 0 less of Y. Therefore all pattern hyperplanes pass through the origin of weight space .
This hyperplane separates the space of weight points into two classes : Those which for the pattern Y produce a TLU ... Eq . ( 4.2 ) regardW2 0 0 less of Y. Therefore all pattern hyperplanes pass through the origin of weight space .
Sivu 69
Foundations of Trainable Pattern-classifying Systems Nils J. Nilsson ... That is , W is either on the negative side of or on the pattern hyperplane corresponding to Y. This error can be rectified by moving W to the positive side of the ...
Foundations of Trainable Pattern-classifying Systems Nils J. Nilsson ... That is , W is either on the negative side of or on the pattern hyperplane corresponding to Y. This error can be rectified by moving W to the positive side of the ...
Sivu 71
Foundations of Trainable Pattern-classifying Systems Nils J. Nilsson ... In one case , c is a fixed constant so that the distance moved toward a particular pattern hyperplane is always the same . This fixed distance may or may not be ...
Foundations of Trainable Pattern-classifying Systems Nils J. Nilsson ... In one case , c is a fixed constant so that the distance moved toward a particular pattern hyperplane is always the same . This fixed distance may or may not be ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding covariance decision surfaces define denote density depends derivation described Development discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear machine linearly separable matrix measurements negative networks normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric regions respect response rule sample mean selection separable shown side solution space Stanford step Suppose theorem theory threshold training methods training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |