Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 28
Sivu 26
Since each of these discriminant functions gi ( X ) is a piecewise linear function of the components of X we shall call them piecewise linear discriminant functions . * Any machine employing piecewise linear discriminant functions will ...
Since each of these discriminant functions gi ( X ) is a piecewise linear function of the components of X we shall call them piecewise linear discriminant functions . * Any machine employing piecewise linear discriminant functions will ...
Sivu 112
2-7 , a layered machine is a piecewise linear machine . A layered machine with P TLUs in the first layer has a total of 2P linear subsidiary discriminant functions ; these are divided into two classes ( corresponding to category 1 and ...
2-7 , a layered machine is a piecewise linear machine . A layered machine with P TLUs in the first layer has a total of 2P linear subsidiary discriminant functions ; these are divided into two classes ( corresponding to category 1 and ...
Sivu 134
... 72 , 75 disadvantages of , 118 graphical example of , 71 for linear machines , 75 numerical example of , 72 for 6 machines , 76 for piecewise linear machines , 116 for TLUs , 69 Estimation of modes , 123 Euclidean distance , 16 from ...
... 72 , 75 disadvantages of , 118 graphical example of , 71 for linear machines , 75 numerical example of , 72 for 6 machines , 76 for piecewise linear machines , 116 for TLUs , 69 Estimation of modes , 123 Euclidean distance , 16 from ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding covariance decision surfaces define denote density depends derivation described Development discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear machine linearly separable matrix measurements negative networks normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric regions respect response rule sample mean selection separable shown side solution space Stanford step Suppose theorem theory threshold training methods training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |