Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 28
Sivu 3
Each value of the response represents a category into which a pattern may be placed , and we shall accordingly label the response values by the integers 1 , ... , R . It is the purpose of this chapter to develop further this basic model ...
Each value of the response represents a category into which a pattern may be placed , and we shall accordingly label the response values by the integers 1 , ... , R . It is the purpose of this chapter to develop further this basic model ...
Sivu 100
If the responses of at least 42 ( Nx ] + 1 ) of these negatively responding TLUs were changed from -1 to +1 , then the ... procedure calls for the adjustment of the minimum number of TLUs needed to correct the machine response .
If the responses of at least 42 ( Nx ] + 1 ) of these negatively responding TLUs were changed from -1 to +1 , then the ... procedure calls for the adjustment of the minimum number of TLUs needed to correct the machine response .
Sivu 110
This response is a two - valued function of the binary numbers 1 , > ( Y ) น 1 y F 2 H f . ( Y ) ui H ( U ) Y : f Response yo D f Switching function fe ( Y ) UP Weights Summing devices Threshold elements -First - layer TLUS Augmented ...
This response is a two - valued function of the binary numbers 1 , > ( Y ) น 1 y F 2 H f . ( Y ) ui H ( U ) Y : f Response yo D f Switching function fe ( Y ) UP Weights Summing devices Threshold elements -First - layer TLUS Augmented ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding covariance decision surfaces define denote density depends derivation described Development discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear machine linearly separable matrix measurements negative networks normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric regions respect response rule sample mean selection separable shown side solution space Stanford step Suppose theorem theory threshold training methods training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |