Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 15
Sivu 103
1 3 6.5 Transformation properties of layered machines We have seen in Secs . ... Another representation , to be discussed in this section , concentrates on the nonlinear transformations implemented by each layer of TLUs .
1 3 6.5 Transformation properties of layered machines We have seen in Secs . ... Another representation , to be discussed in this section , concentrates on the nonlinear transformations implemented by each layer of TLUs .
Sivu 104
Thus , each point in the pattern space is transformed into one of the vertices of a Pi - dimensional hypercube . This hypercube we shall call the first image space or the I , space . The transformation between the pattern space and the ...
Thus , each point in the pattern space is transformed into one of the vertices of a Pi - dimensional hypercube . This hypercube we shall call the first image space or the I , space . The transformation between the pattern space and the ...
Sivu 131
A. 3 Transformation of normal patterns Consider the normal distribution expressed by p ( X ) = 1 ( 2 ) / 2 21 exp { -22 [ ( x – M ) ' - ( X – M ) ] } ) Σ - 1 ( ( A.10 ) where I is the covariance matrix and M is the mean vector .
A. 3 Transformation of normal patterns Consider the normal distribution expressed by p ( X ) = 1 ( 2 ) / 2 21 exp { -22 [ ( x – M ) ' - ( X – M ) ] } ) Σ - 1 ( ( A.10 ) where I is the covariance matrix and M is the mean vector .
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding covariance decision surfaces define denote density depends derivation described Development discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear machine linearly separable matrix measurements negative networks normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric regions respect response rule sample mean selection separable shown side solution space Stanford step Suppose theorem theory threshold training methods training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |