Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 39
Sivu 59
Suppose the pattern vectors belonging to category i are normal with known covariance matrix Σ ; and unknown mean vector . Thus , the d com- ponents of the mean vector are the only unknown parameters of the dis- criminant function .
Suppose the pattern vectors belonging to category i are normal with known covariance matrix Σ ; and unknown mean vector . Thus , the d com- ponents of the mean vector are the only unknown parameters of the dis- criminant function .
Sivu 75
Suppose we have a set y of augmented training patterns divided into subsets Y1 , 2 , . . . , YR which are linearly separable . The subset y ; con- tains all training patterns in y belonging to category i . We desire to train the linear ...
Suppose we have a set y of augmented training patterns divided into subsets Y1 , 2 , . . . , YR which are linearly separable . The subset y ; con- tains all training patterns in y belonging to category i . We desire to train the linear ...
Sivu 89
Y will belong to one of the training subsets ; suppose it belongs - 2. We denote each of the R 1 vectors in Z generated by Y by the symbol Z . , ( Y ) , j = 1 , . . . , R , j # i . 3. Let the ith block of D components of each Z.
Y will belong to one of the training subsets ; suppose it belongs - 2. We denote each of the R 1 vectors in Z generated by Y by the symbol Z . , ( Y ) , j = 1 , . . . , R , j # i . 3. Let the ith block of D components of each Z.
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
TRAINING THEOREMS | 79 |
Tekijänoikeudet | |
2 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described dichotomies discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented important initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space Stanford step subsidiary discriminant Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |