Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 25
Sivu 72
variations of the error - correction rule is convergent . By convergent we mean that when the pattern training subsets are linearly separable , the sequence of TLU weight vectors produced by the training procedure converges toward a ...
variations of the error - correction rule is convergent . By convergent we mean that when the pattern training subsets are linearly separable , the sequence of TLU weight vectors produced by the training procedure converges toward a ...
Sivu 75
4.5 An error - correction training procedure for R > 2 = A linear machine for classifying patterns belonging to more than two categories was defined in Chapter 2. It consists of R linear discriminators and a maximum selector ( Fig .
4.5 An error - correction training procedure for R > 2 = A linear machine for classifying patterns belonging to more than two categories was defined in Chapter 2. It consists of R linear discriminators and a maximum selector ( Fig .
Sivu 133
INDEX Abramson , 61 , 62 , 63 Absolute correction rule , 70 , 81 ADALINES , 77 Adaptive decision networks , 2 Adaptive sample set construction , 125 Adjusted training set , 81 Adjustment , of discriminant functions , 8 of weight vectors ...
INDEX Abramson , 61 , 62 , 63 Absolute correction rule , 70 , 81 ADALINES , 77 Adaptive decision networks , 2 Adaptive sample set construction , 125 Adjusted training set , 81 Adjustment , of discriminant functions , 8 of weight vectors ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
I | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
APPENDIX | 127 |
Tekijänoikeudet | |
1 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding covariance decision surfaces define denote density depends derivation described discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear machine linearly separable matrix measurements negative normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric reduced regions respect response rule sample mean selection separable shown side solution space specific Stanford step Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |