Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 14
Sivu 49
Note also that the ith weight w ; depends logarithmically on the ratio ( Pi / 1 — Pi ) / ( qi / 1 qi ) . If p ; increases , with q ; constant , this ratio will also increase as will w . Such an increase of w ; favors a category - 1 ...
Note also that the ith weight w ; depends logarithmically on the ratio ( Pi / 1 — Pi ) / ( qi / 1 qi ) . If p ; increases , with q ; constant , this ratio will also increase as will w . Such an increase of w ; favors a category - 1 ...
Sivu 57
point of intersection with this line segment depends on the constant term −3⁄41⁄2M ; ' > ̄1M ; + 1⁄2M ; ' ± ̄'M ; + log ( 21 ) 2 = As a further specialization , consider the case in which = I the identity matrix ( or any scalar matrix ) ...
point of intersection with this line segment depends on the constant term −3⁄41⁄2M ; ' > ̄1M ; + 1⁄2M ; ' ± ̄'M ; + log ( 21 ) 2 = As a further specialization , consider the case in which = I the identity matrix ( or any scalar matrix ) ...
Sivu 104
The trans- formation between the pattern space and the I space depends on the values of the weights in the first layer . For a given set of weights , the first layer will transform a finite set X of pattern vectors into a finite set g ...
The trans- formation between the pattern space and the I space depends on the values of the weights in the first layer . For a given set of weights , the first layer will transform a finite set X of pattern vectors into a finite set g ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
TRAINING THEOREMS | 79 |
Tekijänoikeudet | |
2 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described dichotomies discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented important initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space Stanford step subsidiary discriminant Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |