Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 14
Sivu 49
Investigation of Eqs . ( 3:13 ) and ( 3.14 ) in some limiting cases will show that the discriminant function depends in a reasonable way on the probabilities involved . Note , for example , that the values of the a priori probabilities ...
Investigation of Eqs . ( 3:13 ) and ( 3.14 ) in some limiting cases will show that the discriminant function depends in a reasonable way on the probabilities involved . Note , for example , that the values of the a priori probabilities ...
Sivu 57
point of intersection with this line segment depends on the constant term -12M , ' 2 - Mı + Y2M22 - M , + log – * 2 . + - ' M ( . Pi P2 i = 1 , As a further specialization , consider the case in which I = | the I identity matrix ( or ...
point of intersection with this line segment depends on the constant term -12M , ' 2 - Mı + Y2M22 - M , + log – * 2 . + - ' M ( . Pi P2 i = 1 , As a further specialization , consider the case in which I = | the I identity matrix ( or ...
Sivu 104
The transformation between the pattern space and the I , space depends on the values of the weights in the first layer . For a given set of weights , the first layer will transform a finite set X of pattern vectors into a finite set g ...
The transformation between the pattern space and the I , space depends on the values of the weights in the first layer . For a given set of weights , the first layer will transform a finite set X of pattern vectors into a finite set g ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
I | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
APPENDIX | 127 |
Tekijänoikeudet | |
1 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding covariance decision surfaces define denote density depends derivation described discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear machine linearly separable matrix measurements negative normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric reduced regions respect response rule sample mean selection separable shown side solution space specific Stanford step Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |