Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 18
Sivu 49
We then presume that these estimates are the true values and use them in Eq . ( 3.14 ) to specify the discriminant ... Thus , N + N2 = N. Reasonable * estimates for the unknown probabili* The reader with background in statistics will ...
We then presume that these estimates are the true values and use them in Eq . ( 3.14 ) to specify the discriminant ... Thus , N + N2 = N. Reasonable * estimates for the unknown probabili* The reader with background in statistics will ...
Sivu 58
The ( X ) ; and ( E ) ; are reasonable * estimates of M ; and Ei , respectively . The use of these estimates to specify the discriminant functions would constitute a parametric training method . An expression that is somewhat simpler ...
The ( X ) ; and ( E ) ; are reasonable * estimates of M ; and Ei , respectively . The use of these estimates to specify the discriminant functions would constitute a parametric training method . An expression that is somewhat simpler ...
Sivu 120
The Fix and Hodges procedure clearly is an attempt to estimate the values of p ( Xi ) p ( i ) for i = 1 , ... ... of the probability distributions with X. In any case , if the training subsets are small , the estimates ni , N2 , NR will ...
The Fix and Hodges procedure clearly is an attempt to estimate the values of p ( Xi ) p ( i ) for i = 1 , ... ... of the probability distributions with X. In any case , if the training subsets are small , the estimates ni , N2 , NR will ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
I | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
APPENDIX | 127 |
Tekijänoikeudet | |
1 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding covariance decision surfaces define denote density depends derivation described discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear machine linearly separable matrix measurements negative normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric reduced regions respect response rule sample mean selection separable shown side solution space specific Stanford step Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |