Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 12
Sivu 6
... two - dimensional patterns scalar and single - valued functions of the pattern X. These functions , which we call discriminant functions , are chosen such that for all X in Ri , gi ( X ) > g ; ( X ) for i , j = 1 , . . . , R , ji .
... two - dimensional patterns scalar and single - valued functions of the pattern X. These functions , which we call discriminant functions , are chosen such that for all X in Ri , gi ( X ) > g ; ( X ) for i , j = 1 , . . . , R , ji .
Sivu 47
for this loss function , the discriminant functions can be expressed as gi ( X ) = p ( Xi ) p ( i ) for i = 1 , ... , R It will often be convenient to use the alternative expression gi ( X ) = log p ( Xi ) + log p ( i ) for i = 1 ...
for this loss function , the discriminant functions can be expressed as gi ( X ) = p ( Xi ) p ( i ) for i = 1 , ... , R It will often be convenient to use the alternative expression gi ( X ) = log p ( Xi ) + log p ( i ) for i = 1 ...
Sivu 55
3-4 we learned that for a symmetric loss function , the opti- mum classifier uses the discriminant functions given by gi ( X ) = log p ( Xi ) + log pi i = 1 , R · • ( 3.29 ) Using Eq . ( 3.28 ) , the g . ( X ) are given as follows : d ...
3-4 we learned that for a symmetric loss function , the opti- mum classifier uses the discriminant functions given by gi ( X ) = log p ( Xi ) + log pi i = 1 , R · • ( 3.29 ) Using Eq . ( 3.28 ) , the g . ( X ) are given as follows : d ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
TRAINING THEOREMS | 79 |
Tekijänoikeudet | |
2 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described dichotomies discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented important initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space Stanford step subsidiary discriminant Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |