Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 63
Sivu 16
An important special case of a linear machine is a minimum - distance classifier with respect to points . We shall consider this special case first before discussing the properties of linear machines in general .
An important special case of a linear machine is a minimum - distance classifier with respect to points . We shall consider this special case first before discussing the properties of linear machines in general .
Sivu 20
In the special case in which the linear machine is a minimum - distance classi- fier , the surface Si ; is the hyperplane which is the perpendicular bisector of the line segment joining the points P , and Pj . Figure 2-3 shows the ...
In the special case in which the linear machine is a minimum - distance classi- fier , the surface Si ; is the hyperplane which is the perpendicular bisector of the line segment joining the points P , and Pj . Figure 2-3 shows the ...
Sivu 134
Decision regions , 6 convexity of , 20 of a linear machine , 19 , 20 of a piecewise linear machine , 26 , 27 Decision surfaces , 5 , 18 , 19 equation of , 6 , 7 , 18 Decision theory , 44 Degrees of freedom , number of , for a ...
Decision regions , 6 convexity of , 20 of a linear machine , 19 , 20 of a piecewise linear machine , 26 , 27 Decision surfaces , 5 , 18 , 19 equation of , 6 , 7 , 18 Decision theory , 44 Degrees of freedom , number of , for a ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
TRAINING THEOREMS | 79 |
Tekijänoikeudet | |
2 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described dichotomies discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented important initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space Stanford step subsidiary discriminant Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |