Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 15
Sivu 69
That is , W is either on the negative side of or on the pattern hyperplane corresponding to Y. This error can be rectified by moving W to the positive side of the pattern hyperplane . The most direct path to the other side is along a ...
That is , W is either on the negative side of or on the pattern hyperplane corresponding to Y. This error can be rectified by moving W to the positive side of the pattern hyperplane . The most direct path to the other side is along a ...
Sivu 101
Thus , if Yk causes a majority of the committee TLUs to respond negatively , we adjust the 12 ( N + 1 + 1 ) weight ... dot products with Yk . Those 12 ( | Nxl + 1 ) having the least - positive ( but not negative ) dot products are ...
Thus , if Yk causes a majority of the committee TLUs to respond negatively , we adjust the 12 ( N + 1 + 1 ) weight ... dot products with Yk . Those 12 ( | Nxl + 1 ) having the least - positive ( but not negative ) dot products are ...
Sivu 127
APPENDIX AN ALTERNATIVE IMPLEMENTATION OF QUADRIC DISCRIMINANT FUNCTIONS A.1 Separation of a quadratic form into positive and negative parts Consider the quadric function g ( X ) X'AX + B'X + C ( A : 1 ) where A is a real , d x d ...
APPENDIX AN ALTERNATIVE IMPLEMENTATION OF QUADRIC DISCRIMINANT FUNCTIONS A.1 Separation of a quadratic form into positive and negative parts Consider the quadric function g ( X ) X'AX + B'X + C ( A : 1 ) where A is a real , d x d ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
I | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
APPENDIX | 127 |
Tekijänoikeudet | |
1 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding covariance decision surfaces define denote density depends derivation described discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear machine linearly separable matrix measurements negative normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric reduced regions respect response rule sample mean selection separable shown side solution space specific Stanford step Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |