Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 43
Sivu 69
Foundations of Trainable Pattern-classifying Systems Nils J. Nilsson ... That is , W is either on the negative side of or on the pattern hyperplane corresponding to Y. This error can be rectified by moving W to the posi- tive side of ...
Foundations of Trainable Pattern-classifying Systems Nils J. Nilsson ... That is , W is either on the negative side of or on the pattern hyperplane corresponding to Y. This error can be rectified by moving W to the posi- tive side of ...
Sivu 71
Foundations of Trainable Pattern-classifying Systems Nils J. Nilsson ... In one case , c is a fixed constant so that the distance moved toward a particular pattern hyperplane is always the same . This fixed distance . may or may not be ...
Foundations of Trainable Pattern-classifying Systems Nils J. Nilsson ... In one case , c is a fixed constant so that the distance moved toward a particular pattern hyperplane is always the same . This fixed distance . may or may not be ...
Sivu 102
those that are closest to this pattern hyperplane are adjusted by the addi- tion of the pattern vector . Consider the three pattern vectors and their corresponding pattern hyperplanes ( lines ) shown in Fig . 6 · 5 .
those that are closest to this pattern hyperplane are adjusted by the addi- tion of the pattern vector . Consider the three pattern vectors and their corresponding pattern hyperplanes ( lines ) shown in Fig . 6 · 5 .
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
TRAINING THEOREMS | 79 |
Tekijänoikeudet | |
2 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described dichotomies discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented important initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space Stanford step subsidiary discriminant Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |