Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 35
Sivu 37
Foundations of Trainable Pattern-classifying Systems Nils J. Nilsson. We see then that the effect of the K constraints imposed by Z is to reduce the dimensionality of the space by K. We then have Lz ( N , d ) == L ( N , d - K ) 2.15 The ...
Foundations of Trainable Pattern-classifying Systems Nils J. Nilsson. We see then that the effect of the K constraints imposed by Z is to reduce the dimensionality of the space by K. We then have Lz ( N , d ) == L ( N , d - K ) 2.15 The ...
Sivu 104
Thus , each point in the pattern space is trans- formed into one of the vertices of a Pi - dimensional hypercube . This hypercube we shall call the first image space or the I1 space . The trans- formation between the pattern space and ...
Thus , each point in the pattern space is trans- formed into one of the vertices of a Pi - dimensional hypercube . This hypercube we shall call the first image space or the I1 space . The trans- formation between the pattern space and ...
Sivu 105
The three - dimensional 1 space is then a cube , centered about the origin , whose vertices represent the eight ... axes of the image - space cube in accordance with the TLU 5 6 TLU 3 8 6 TLU 1 TLU 2 Origin * 1 ( a ) Pattern space 1,4,5 ...
The three - dimensional 1 space is then a cube , centered about the origin , whose vertices represent the eight ... axes of the image - space cube in accordance with the TLU 5 6 TLU 3 8 6 TLU 1 TLU 2 Origin * 1 ( a ) Pattern space 1,4,5 ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
TRAINING THEOREMS | 79 |
Tekijänoikeudet | |
2 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described dichotomies discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented important initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space Stanford step subsidiary discriminant Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |