Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 53
Sivu 5
Any pattern can be represented by a point in a d - dimensional Euclidean space Ed called the pattern space . ... the pattern point and the pattern vector by the symbol X. A pattern classifier is thus a device which maps the points of Ed ...
Any pattern can be represented by a point in a d - dimensional Euclidean space Ed called the pattern space . ... the pattern point and the pattern vector by the symbol X. A pattern classifier is thus a device which maps the points of Ed ...
Sivu 32
We shall show that if the positions of the N pattern points satisfy some quite mild conditions , the number of dichotomies that can be implemented by a function will depend only on the number of patterns N and the number of parameters M ...
We shall show that if the positions of the N pattern points satisfy some quite mild conditions , the number of dichotomies that can be implemented by a function will depend only on the number of patterns N and the number of parameters M ...
Sivu 36
Suppose that we have a set X of N points and a set Z of K points ( K < d ) in Ed . We desire to know the number Lz ( N , d ) of linear dichot- omies of X achievable by a hyperplane constrained to contain all the points of Z. We shall ...
Suppose that we have a set X of N points and a set Z of K points ( K < d ) in Ed . We desire to know the number Lz ( N , d ) of linear dichot- omies of X achievable by a hyperplane constrained to contain all the points of Z. We shall ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
TRAINING THEOREMS | 79 |
Tekijänoikeudet | |
2 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described dichotomies discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented important initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space Stanford step subsidiary discriminant Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |