Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 23
Sivu 28
If A has one or more of its eigenvalues equal to zero and all the others positive , then the quadratic form will never ... 2.9 Quadric decision surfaces The decision surfaces of quadric machines are sections of second - degree surfaces ...
If A has one or more of its eigenvalues equal to zero and all the others positive , then the quadratic form will never ... 2.9 Quadric decision surfaces The decision surfaces of quadric machines are sections of second - degree surfaces ...
Sivu 29
2 . fy * W 2 z Ef 2 X : Wk g ( x ) Discriminant : WM r = M Summing device Quadric processor Pattern w M + 1 +1 Weights these components is M = [ dd + 3 ) ] / 2 . We shall write this correspond= ence as = F = F ( X ) ( 2:27 ) where F ( X ) ...
2 . fy * W 2 z Ef 2 X : Wk g ( x ) Discriminant : WM r = M Summing device Quadric processor Pattern w M + 1 +1 Weights these components is M = [ dd + 3 ) ] / 2 . We shall write this correspond= ence as = F = F ( X ) ( 2:27 ) where F ( X ) ...
Sivu 30
A quadric machine can therefore be implemented by a quadric processor followed by a linear machine . a 2.11 Q functions O . > We noted in Sec . 2 · 10 that a quadric discriminant function can be considered to be a linear function of the ...
A quadric machine can therefore be implemented by a quadric processor followed by a linear machine . a 2.11 Q functions O . > We noted in Sec . 2 · 10 that a quadric discriminant function can be considered to be a linear function of the ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
I | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
APPENDIX | 127 |
Tekijänoikeudet | |
1 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding covariance decision surfaces define denote density depends derivation described discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear machine linearly separable matrix measurements negative normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric reduced regions respect response rule sample mean selection separable shown side solution space specific Stanford step Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |