Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 18
Sivu 24
2.7 Piecewise linear discriminant functions а As a special case of discriminant functions which we shall call piecewise linear , we shall first consider those of a minimum - distance classifier with respect to point sets .
2.7 Piecewise linear discriminant functions а As a special case of discriminant functions which we shall call piecewise linear , we shall first consider those of a minimum - distance classifier with respect to point sets .
Sivu 26
Any machine employing piecewise linear discriminant functions will be called a piecewise linear machine , of which a minimum - distance classifier with respect to point sets is a special case . a ( 1 ) R , 1 pl ) R 2 ( 2 ) 1 R , ( 1 1 ...
Any machine employing piecewise linear discriminant functions will be called a piecewise linear machine , of which a minimum - distance classifier with respect to point sets is a special case . a ( 1 ) R , 1 pl ) R 2 ( 2 ) 1 R , ( 1 1 ...
Sivu 135
... 77 Mean vector of normal patterns , 53 , 54 Measurements , 4 selection of , 4 Miller , 12 , 13 Minimization of Euclidean distances , 132 Minimum - distance classifiers , with respect to point sets , 24 , 121 with respect to points ...
... 77 Mean vector of normal patterns , 53 , 54 Measurements , 4 selection of , 4 Miller , 12 , 13 Minimization of Euclidean distances , 132 Minimum - distance classifiers , with respect to point sets , 24 , 121 with respect to points ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
I | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
APPENDIX | 127 |
Tekijänoikeudet | |
1 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding covariance decision surfaces define denote density depends derivation described discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear machine linearly separable matrix measurements negative normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric reduced regions respect response rule sample mean selection separable shown side solution space specific Stanford step Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |