Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 23
Sivu vii
The present work deals specifically with the theory of a subclass of learning machines , those which can be trained to recognize patterns . Some well - known examples of trainable pattern - classifying systems are the PERCEPTRON and the ...
The present work deals specifically with the theory of a subclass of learning machines , those which can be trained to recognize patterns . Some well - known examples of trainable pattern - classifying systems are the PERCEPTRON and the ...
Sivu 77
Tests on a Cell Assembly Theory of the Action of the Brain Using a Large Digital Computer , Trans . IRE on Info . Theory , vol . IT - 2 , no . 3 , pp . 80-93 , September , 1956 . 4 Farley , B. , and W. Clark : Simulation of Self ...
Tests on a Cell Assembly Theory of the Action of the Brain Using a Large Digital Computer , Trans . IRE on Info . Theory , vol . IT - 2 , no . 3 , pp . 80-93 , September , 1956 . 4 Farley , B. , and W. Clark : Simulation of Self ...
Sivu 126
Theory , vol . 178 , no . 5 , pp . S82 - S91 , September , 1962 . 5 Firschein , O. , and M. Fischler : Automatic Subclass Determination for Pattern- recognition Applications , Trans . IEEE on Elect .
Theory , vol . 178 , no . 5 , pp . S82 - S91 , September , 1962 . 5 Firschein , O. , and M. Fischler : Automatic Subclass Determination for Pattern- recognition Applications , Trans . IEEE on Elect .
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
TRAINING THEOREMS | 79 |
Tekijänoikeudet | |
2 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described dichotomies discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented important initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space Stanford step subsidiary discriminant Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |