Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 50
Sivu 9
If the values of these parameters were known , ade- quate discriminant functions based on them could be directly specified . ... estimates of the parameter values , and the discriminant functions are then determined by these estimates .
If the values of these parameters were known , ade- quate discriminant functions based on them could be directly specified . ... estimates of the parameter values , and the discriminant functions are then determined by these estimates .
Sivu 44
We assume that the p ( Xi ) are known functions of a finite number of characteristic parameters whose values we might not know a priori . For example , we may know that the p ( X | i ) , i = 1 , . . . , R , are normal probability ...
We assume that the p ( Xi ) are known functions of a finite number of characteristic parameters whose values we might not know a priori . For example , we may know that the p ( X | i ) , i = 1 , . . . , R , are normal probability ...
Sivu 49
values are given by 9i ( 1 Wi = log Pi ( 1 Wa + 1 = log [ 1 p ( 1 ) - - Ji ) pi ) i = 1 , 5 ] + log — p ( 1 ) ... Note , for example , that the values of the a priori proba- bilities p ( 1 ) and 1 p ( 1 ) affect only the value of wa + 1 .
values are given by 9i ( 1 Wi = log Pi ( 1 Wa + 1 = log [ 1 p ( 1 ) - - Ji ) pi ) i = 1 , 5 ] + log — p ( 1 ) ... Note , for example , that the values of the a priori proba- bilities p ( 1 ) and 1 p ( 1 ) affect only the value of wa + 1 .
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
TRAINING THEOREMS | 79 |
Tekijänoikeudet | |
2 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described dichotomies discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented important initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space Stanford step subsidiary discriminant Suppose theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |