Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 29
Sivu 72
variations of the error - correction rule is convergent . By convergent we mean that when the pattern training subsets are linearly separable , the sequence of TLU weight vectors produced by the training procedure con- verges toward a ...
variations of the error - correction rule is convergent . By convergent we mean that when the pattern training subsets are linearly separable , the sequence of TLU weight vectors produced by the training procedure con- verges toward a ...
Sivu 119
Suppose that we decided to use an error - correction training procedure to train a single TLU . Even though a TLU is capable of implementing the optimum decision surface , an error - correction procedure could never stabilize at the ...
Suppose that we decided to use an error - correction training procedure to train a single TLU . Even though a TLU is capable of implementing the optimum decision surface , an error - correction procedure could never stabilize at the ...
Sivu 133
INDEX Abramson , 61 , 62 , 63 Absolute correction rule , 70 , 81 ADALINES , 77 Adaptive decision networks , 2 Adaptive sample set construction , 125 Adjusted training set , 81 Adjustment , of discriminant functions , 8 of weight vectors ...
INDEX Abramson , 61 , 62 , 63 Absolute correction rule , 70 , 81 ADALINES , 77 Adaptive decision networks , 2 Adaptive sample set construction , 125 Adjusted training set , 81 Adjustment , of discriminant functions , 8 of weight vectors ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
PARAMETRIC TRAINING METHODS | 43 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
Tekijänoikeudet | |
3 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter classifier cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern hyperplane pattern space pattern vector pattern-classifying piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space step subsidiary discriminant Suppose terns theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |