Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 22
Sivu 24
Let us define the Euclidean distance d ( X , P ; ) from an arbi- trary point X to the point set P ; by ... " d ( X , P ; ) = i min j = 1 , ... , Li X - P , i ( 2.16 ) That is , the distance between X and P ; is the smallest of the ...
Let us define the Euclidean distance d ( X , P ; ) from an arbi- trary point X to the point set P ; by ... " d ( X , P ; ) = i min j = 1 , ... , Li X - P , i ( 2.16 ) That is , the distance between X and P ; is the smallest of the ...
Sivu 47
... we define the discriminant function , g ( X ) = g1 ( X ) — 92 ( X ) . If g ( X ) > 0 , the machine places X in category 1 ; if g ( X ) < 0 , the machine places X in category 2. From Eq . ( 3-76 ) we can derive g ( X ) = log p ( X1 ) ...
... we define the discriminant function , g ( X ) = g1 ( X ) — 92 ( X ) . If g ( X ) > 0 , the machine places X in category 1 ; if g ( X ) < 0 , the machine places X in category 2. From Eq . ( 3-76 ) we can derive g ( X ) = log p ( X1 ) ...
Sivu 128
Let us now define the real , diagonal matrices D1 = λι 0 and ( A - 4 ) 0 where A1 , .. D2 0 Pi Ap , are the first p1 diagonal elements of A , and Ap1 + 1 , App , are the next p2 diagonal elements of A. 1 Now let T1 be a dX p1 matrix ...
Let us now define the real , diagonal matrices D1 = λι 0 and ( A - 4 ) 0 where A1 , .. D2 0 Pi Ap , are the first p1 diagonal elements of A , and Ap1 + 1 , App , are the next p2 diagonal elements of A. 1 Now let T1 be a dX p1 matrix ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
PARAMETRIC TRAINING METHODS | 43 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
Tekijänoikeudet | |
3 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter classifier cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern hyperplane pattern space pattern vector pattern-classifying piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space step subsidiary discriminant Suppose terns theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |