Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 13
Sivu 49
Pi ) / ( gi / 1 - - Note also that the ith weight w ; depends logarithmically on the ratio ( Pi / 1 qi ) . If p ; increases , with q ; constant , this ratio will also increase as will w . Such an increase of w ; favors a category - 1 ...
Pi ) / ( gi / 1 - - Note also that the ith weight w ; depends logarithmically on the ratio ( Pi / 1 qi ) . If p ; increases , with q ; constant , this ratio will also increase as will w . Such an increase of w ; favors a category - 1 ...
Sivu 57
point of intersection with this line segment depends on the constant term −3⁄41⁄2M‚'¤ ̄'M ̧ + 3⁄41⁄2M ; ' ï¬'M ; + log ( 21 ) 1 2 P2 As a further specialization , consider the case in which I the identity matrix ( or any scalar matrix ) ...
point of intersection with this line segment depends on the constant term −3⁄41⁄2M‚'¤ ̄'M ̧ + 3⁄41⁄2M ; ' ï¬'M ; + log ( 21 ) 1 2 P2 As a further specialization , consider the case in which I the identity matrix ( or any scalar matrix ) ...
Sivu 119
In the next few sections we shall develop some nonparametric procedures for training PWL machines that do not depend on the error- correction principle . 7.4 A nonparametric decision procedure Several nonparametric decision methods ...
In the next few sections we shall develop some nonparametric procedures for training PWL machines that do not depend on the error- correction principle . 7.4 A nonparametric decision procedure Several nonparametric decision methods ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
PARAMETRIC TRAINING METHODS | 43 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
Tekijänoikeudet | |
3 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter classifier cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern hyperplane pattern space pattern vector pattern-classifying piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space step subsidiary discriminant Suppose terns theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |