Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 25
Sivu 75
Y for i = 1 , R " ( 4.7 ) Simple extensions of the training procedures already discussed can be used to train a general linear machine . Suppose we have a set Y of augmented training patterns divided into subsets Y1 , 2 , . . .
Y for i = 1 , R " ( 4.7 ) Simple extensions of the training procedures already discussed can be used to train a general linear machine . Suppose we have a set Y of augmented training patterns divided into subsets Y1 , 2 , . . .
Sivu 77
The historical background of these proofs will be discussed in Sec . 5.7 . REFERENCES 1 McCulloch , W. , and W. Pitts : A Logical Calculus of the Ideas Immanent in Nervous Activity , Bulletin of Math . Biophysics , vol . 5 , pp .
The historical background of these proofs will be discussed in Sec . 5.7 . REFERENCES 1 McCulloch , W. , and W. Pitts : A Logical Calculus of the Ideas Immanent in Nervous Activity , Bulletin of Math . Biophysics , vol . 5 , pp .
Sivu 118
The nonparametric rules that we have discussed so far have all been error - correction rules , and it must be said that such rules do suffer from an important disadvantage . This disadvantage results from the fact that error ...
The nonparametric rules that we have discussed so far have all been error - correction rules , and it must be said that such rules do suffer from an important disadvantage . This disadvantage results from the fact that error ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
PARAMETRIC TRAINING METHODS | 43 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
Tekijänoikeudet | |
3 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter classifier cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern hyperplane pattern space pattern vector pattern-classifying piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space step subsidiary discriminant Suppose terns theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |