Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 24
Sivu 47
for this loss function , the discriminant functions can be expressed as gi ( X ) = p ( Xi ) p ( i ) for i = 1 , ... , R It will often be convenient to use the alternative expression gi ( X ) = log p ( X | i ) + log p ( i ) ( 3.7a ) for ...
for this loss function , the discriminant functions can be expressed as gi ( X ) = p ( Xi ) p ( i ) for i = 1 , ... , R It will often be convenient to use the alternative expression gi ( X ) = log p ( X | i ) + log p ( i ) ( 3.7a ) for ...
Sivu 52
The expression for the bivariate normal density function for the unnormalized and untranslated variables x and x2 is more complicated * than that of Eq . ( 3.18 ) , but the general properties of the function are easily described .
The expression for the bivariate normal density function for the unnormalized and untranslated variables x and x2 is more complicated * than that of Eq . ( 3.18 ) , but the general properties of the function are easily described .
Sivu 54
The expression for the d - variate normal proba- bility distribution is almost identical in form to that of Eq . ( 3 · 21 ) . It is the following : P ( X ) = 1 ( 2π ) α / 2 | Σ exp ( -2 ( X - M ) ' 1 ( X — M ) } ( 3.24 ) The various ...
The expression for the d - variate normal proba- bility distribution is almost identical in form to that of Eq . ( 3 · 21 ) . It is the following : P ( X ) = 1 ( 2π ) α / 2 | Σ exp ( -2 ( X - M ) ' 1 ( X — M ) } ( 3.24 ) The various ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
PARAMETRIC TRAINING METHODS | 43 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
Tekijänoikeudet | |
3 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter classifier cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern hyperplane pattern space pattern vector pattern-classifying piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space step subsidiary discriminant Suppose terns theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |