Learning Machines: Foundations of Trainable Pattern-classifying SystemsMcGraw-Hill, 1965 - 137 sivua |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 6
Sivu 67
... terns implementable by a TLU , that is , the number of linear dichotomies of N pat- terns . Thus we have an alternative method for computing L ( N , d ) . It is a straightforward matter to calculate the maximum number of regions formed ...
... terns implementable by a TLU , that is , the number of linear dichotomies of N pat- terns . Thus we have an alternative method for computing L ( N , d ) . It is a straightforward matter to calculate the maximum number of regions formed ...
Sivu 123
... terns occurring earlier in the training sequence . The reader is invited to test the above rule graphically using sample clusters of two - dimensional patterns . Each pattern is considered in se- quence and the closest weight vector ...
... terns occurring earlier in the training sequence . The reader is invited to test the above rule graphically using sample clusters of two - dimensional patterns . Each pattern is considered in se- quence and the closest weight vector ...
Sivu 136
... terns , 48 for normal patterns , 55 Optimum machines , 44 Overlapping probability distributions , 118 Overrelaxation , 77 Pairwise linearly separable subsets , 21 Parameters , 9 , 15 , 43 , 44 Parametric training , 9 , 10 , 43 , 44 ...
... terns , 48 for normal patterns , 55 Optimum machines , 44 Overlapping probability distributions , 118 Overrelaxation , 77 Pairwise linearly separable subsets , 21 Parameters , 9 , 15 , 43 , 44 Parametric training , 9 , 10 , 43 , 44 ...
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
PARAMETRIC TRAINING METHODS | 43 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
Tekijänoikeudet | |
3 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter classifier cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern hyperplane pattern space pattern vector pattern-classifying piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space step subsidiary discriminant Suppose terns theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |