Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 23
Sivu vii
The present work deals specifically with the theory of a subclass of learning machines , those which can be trained to recognize patterns . Some well - known examples of trainable pattern - classifying systems are the PERCEPTRON and the ...
The present work deals specifically with the theory of a subclass of learning machines , those which can be trained to recognize patterns . Some well - known examples of trainable pattern - classifying systems are the PERCEPTRON and the ...
Sivu 44
3.2 Discriminant functions based on decision theory Statistical decision theory can be used as a means to establish the dis- criminant functions for probabilistic patterns governed by known proba- bility functions .
3.2 Discriminant functions based on decision theory Statistical decision theory can be used as a means to establish the dis- criminant functions for probabilistic patterns governed by known proba- bility functions .
Sivu 126
Theory , vol . 178 , no . 5 , pp . S82 - S91 , September , 1962 . Firschein , O. , and M. Fischler : Automatic Subclass Determination for Pattern- recognition Applications , Trans .
Theory , vol . 178 , no . 5 , pp . S82 - S91 , September , 1962 . Firschein , O. , and M. Fischler : Automatic Subclass Determination for Pattern- recognition Applications , Trans .
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
PARAMETRIC TRAINING METHODS | 43 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
Tekijänoikeudet | |
3 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter classifier cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern hyperplane pattern space pattern vector pattern-classifying piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space step subsidiary discriminant Suppose terns theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |