Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 11
Sivu xi
... 101 6.5 Transformation properties of layered machines , 103 6.6 A sufficient condition for image - space linear separability , 107 6.7 Derivation of a discriminant function for a layered machine , 109 6.8 Bibliographical and ...
... 101 6.5 Transformation properties of layered machines , 103 6.6 A sufficient condition for image - space linear separability , 107 6.7 Derivation of a discriminant function for a layered machine , 109 6.8 Bibliographical and ...
Sivu 103
2 6.5 Transformation properties of layered machines We have seen in Secs . ... Another representation , to be discussed in this section , con- centrates on the nonlinear transformations implemented by each layer of TLUS .
2 6.5 Transformation properties of layered machines We have seen in Secs . ... Another representation , to be discussed in this section , con- centrates on the nonlinear transformations implemented by each layer of TLUS .
Sivu 107
The process of training the committee machine is then a search for a pattern - space to image - space transformation such that g1 ( 1 ) and ( 2 ) are placed on opposite sides of the fixed image - space hyperplane .
The process of training the committee machine is then a search for a pattern - space to image - space transformation such that g1 ( 1 ) and ( 2 ) are placed on opposite sides of the fixed image - space hyperplane .
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
PARAMETRIC TRAINING METHODS | 43 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
Tekijänoikeudet | |
3 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank called cells changes Chapter classifier cluster column committee machine components consider consists contains correction corresponding covariance decision surfaces define denote density depends described discriminant functions discussed distance distributions elements equal error-correction estimates example exist expression FIGURE fixed given implemented initial layered machine linear machine linearly separable lines majority matrix mean measurements modes negative networks nonparametric normal Note optimum origin parameters partition pattern hyperplane pattern space pattern vector pattern-classifying piecewise linear plane points positive presented probability problem properties PWL machine quadric regions respect response rule selection separable sequence side solution space step subsidiary discriminant Suppose terns theorem theory threshold training methods training patterns training procedure training sequence training subsets transformation values weight vectors X1 and X2 Y₁ zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |