Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 13
Sivu viii
Professors N. Abramson and T. Cover of Stanford and L. Zadeh of the University of California gave many helpful suggestions for improving the book . Discussions with Dr. Louis Fein , Consultant , helped to clarify some fundamental ...
Professors N. Abramson and T. Cover of Stanford and L. Zadeh of the University of California gave many helpful suggestions for improving the book . Discussions with Dr. Louis Fein , Consultant , helped to clarify some fundamental ...
Sivu 78
Widrow , B. , and M. E. Hoff : Adaptive Switching Circuits , Stanford Elec- tronics Laboratories Technical Report 1553-1 , Stanford University , Stanford , California , June 30 , 1960 . 9 Widrow , B. , et al .
Widrow , B. , and M. E. Hoff : Adaptive Switching Circuits , Stanford Elec- tronics Laboratories Technical Report 1553-1 , Stanford University , Stanford , California , June 30 , 1960 . 9 Widrow , B. , et al .
Sivu
N5 Learning machines C.7 Stanford University Libraries ENGINEERING LIBRARY 335 N5 3 6105 030 196 286 Cop . 7 Stanford University Libraries Stanford , California Return this book on or before date due . AUG 18'72 JUL 8 1980 MAR 13 1974 ...
N5 Learning machines C.7 Stanford University Libraries ENGINEERING LIBRARY 335 N5 3 6105 030 196 286 Cop . 7 Stanford University Libraries Stanford , California Return this book on or before date due . AUG 18'72 JUL 8 1980 MAR 13 1974 ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
PARAMETRIC TRAINING METHODS | 43 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
Tekijänoikeudet | |
2 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding decision surfaces define denote density depends derivation described Development discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear discriminant functions linear machine linearly separable measurements negative networks normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric reduced regions respect response rule sample mean selection separable shown side space Stanford step subsidiary discriminant Suppose theorem theory threshold training methods training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |