Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 18
Sivu 9
The parametric methods are appropriate for classification tasks where each pattern category i , i = 1 , . . . , R , is known a priori to be characterized by a set of parameters , some of whose values are unknown .
The parametric methods are appropriate for classification tasks where each pattern category i , i = 1 , . . . , R , is known a priori to be characterized by a set of parameters , some of whose values are unknown .
Sivu 43
We shall begin by assuming that the pattern classes are characterized by sets of parameters ( for example , cluster points ) . The values of these parameters might be unknown a priori . If the parameters were known , we assume that ...
We shall begin by assuming that the pattern classes are characterized by sets of parameters ( for example , cluster points ) . The values of these parameters might be unknown a priori . If the parameters were known , we assume that ...
Sivu 44
We assume that the p ( Xi ) are known functions of a finite number of characteristic parameters whose values we might not know a priori . For example , we may know that the p ( Xi ) , i = 1 , . . R , are normal probability - density ...
We assume that the p ( Xi ) are known functions of a finite number of characteristic parameters whose values we might not know a priori . For example , we may know that the p ( Xi ) , i = 1 , . . R , are normal probability - density ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
PARAMETRIC TRAINING METHODS | 43 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
Tekijänoikeudet | |
2 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding decision surfaces define denote density depends derivation described Development discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear discriminant functions linear machine linearly separable measurements negative networks normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric reduced regions respect response rule sample mean selection separable shown side space Stanford step subsidiary discriminant Suppose theorem theory threshold training methods training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |