Learning Machines: Foundations of Trainable Pattern-classifying Systems |
Kirjan sisältä
Tulokset 1 - 3 kokonaismäärästä 33
Sivu 37
Foundations of Trainable Pattern-classifying Systems Nils J. Nilsson. We see then that the effect of the K constraints imposed by Z is to reduce the dimensionality of the space by K. We then have Lz ( N , d ) = L ( N , d L ( N , d - K ) ...
Foundations of Trainable Pattern-classifying Systems Nils J. Nilsson. We see then that the effect of the K constraints imposed by Z is to reduce the dimensionality of the space by K. We then have Lz ( N , d ) = L ( N , d L ( N , d - K ) ...
Sivu 104
Thus , each point in the pattern space is trans- formed into one of the vertices of a Pi - dimensional hypercube . This hypercube we shall call the first image space or the I1 space . The trans- formation between the pattern space and ...
Thus , each point in the pattern space is trans- formed into one of the vertices of a Pi - dimensional hypercube . This hypercube we shall call the first image space or the I1 space . The trans- formation between the pattern space and ...
Sivu 105
If we number the coordinate axes of the image - space cube in accordance with the TLU TLU 3 TLU 2 5 S Origin 7 6 8 TLU 1 3 x2 1,4,5,8 TLU 3 1 Origin TLU 2 - * 3,7 TLU 1 ( b ) Image space 2 ( a ) Pattern space FIGURE 6.6 Pattern - space ...
If we number the coordinate axes of the image - space cube in accordance with the TLU TLU 3 TLU 2 5 S Origin 7 6 8 TLU 1 3 x2 1,4,5,8 TLU 3 1 Origin TLU 2 - * 3,7 TLU 1 ( b ) Image space 2 ( a ) Pattern space FIGURE 6.6 Pattern - space ...
Mitä ihmiset sanovat - Kirjoita arvostelu
Yhtään arvostelua ei löytynyt.
Sisältö
TRAINABLE PATTERN CLASSIFIERS | 1 |
PARAMETRIC TRAINING METHODS | 43 |
SOME NONPARAMETRIC TRAINING METHODS | 65 |
Tekijänoikeudet | |
2 muita osia ei näytetty
Muita painoksia - Näytä kaikki
Yleiset termit ja lausekkeet
adjusted apply assume bank belonging to category called changes Chapter cluster committee components consider consists contains correction corresponding decision surfaces define denote density depends derivation described Development discriminant functions discussed distance distribution element equal error-correction estimates example exists expression FIGURE fixed given implemented important initial layered machine linear dichotomies linear discriminant functions linear machine linearly separable measurements negative networks normal Note optimum origin parameters partition pattern classifier pattern hyperplane pattern space pattern vector piecewise linear plane points positive presented probability problem proof properties proved PWL machine quadric reduced regions respect response rule sample mean selection separable shown side space Stanford step subsidiary discriminant Suppose theorem theory threshold training methods training procedure training sequence training subsets transformation values weight vectors zero
Viitteet tähän teokseen
A Probabilistic Theory of Pattern Recognition Luc Devroye,László Györfi,Gabor Lugosi Rajoitettu esikatselu - 1997 |