An Introduction to Support Vector Machines and Other Kernel-based Learning Methods

Etukansi
Cambridge University Press, 23.3.2000 - 189 sivua
0 Arvostelut
Arvosteluja ei vahvisteta, mutta Google tarkistaa ne valheellisen sisällön varalta ja poistaa tällaisen sisällön
This is the first comprehensive introduction to Support Vector Machines (SVMs), a new generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications.

Kirjan sisältä

Mitä ihmiset sanovat - Kirjoita arvostelu

Yhtään arvostelua ei löytynyt.

Sisältö

The Learning Methodology
1
Generalisation Theory
4
Linear Learning Machines
9
KernelInduced Feature Spaces
26
Optimisation Theory
81
Support Vector Machines
103
Implementation Techniques
125
Applications of Support Vector Machines
149
A Pseudocode for the SMO Algorithm
162
References
173
Index
187
Tekijänoikeudet

Muita painoksia - Näytä kaikki

Yleiset termit ja lausekkeet

Kirjaluettelon tiedot